Bir elektrik sisteminin topraklanması, elektrik dağıtım sistemini planlayan veya tasarlayan kişiler tarafından belirlenmesi gereken bir karardır. Sistem topraklaması için her birinin kendi amacı olan çeşitli yöntemler ve kriterler vardır. Dağıtım sistemi tasarımının en önemli üç kriteri ise güvenlik, güvenilirlik ve ekonomidir. Güvenlik en yüksek önceliğe sahiptir, bunu güvenilirlik ve ekonomi takip eder. Güç sistemi güvenliği esas olarak arıza akımını önleyici bir kriterdir. Arıza akımı, insan vücuduna zarar verebilir ve hatta ölümcül olabilir. Arıza akımının sonuçları akım değerinin büyüklüğü kadar süresine de bağlıdır. Güvenliği sağlamak için, güç sistemleri arızaların süresini sınırlayan koruma sistemlerini içermektedir.
Elektrik şebekelerinde başlangıçta, gelişmemiş yapı bulunması ve özellikle kablo kullanım oranının düşük olması nedeniyle, kapasite çok yüksek olmadığı için topraklamaya gerek yoktu ve dağıtım şebekelerinde izole nötr noktası tercih edilmekteydi. Dağıtım şebekesinin büyümesi ve kablo kullanım oranının artması ile nötr nokta topraklaması baskın olmaya başlamıştır. İnsanların güvenliği nedeniyle yüksek bir kısıtlama olduğu için, toprak arızalarının büyüklüğünü sınırlamak amacıyla topraklama sistemleri uygulanmaya başlanmıştır. Yüksek toprak arıza akımı durumunda, olası bir dokunma noktasındaki gerilim potansiyelini arıza ile eşitlemek gerekir. Toprak arıza akımını azaltacak bir topraklama sistemi tasarlamak genellikle çok daha mantıklıdır.
Orta gerilim dağıtım şebekeleri, toprak arıza akımlarının koruma röleleri tarafından algılanması ve canlıların veya sistemlerin güvenliği için nötr noktası topraklamasının nasıl gerçekleştirileceğine dair birçok yönteme sahiptir. Nötr noktası birden fazla şekilde ele alınabilir. Direkt olarak topraklanabilir, izole edilmiş veya bir direnç veya endüktans üzerinden topraklanmış olabilir. Nötr noktasının topraklama yöntemi, normal işletme koşullarında sistemin işletilmesini etkilemez. Ancak toprak arızası durumunda nötr nokta topraklamasını sistem üzerinde büyük bir etkiye sahiptir. Normal çalışma sırasında, teorik olarak nötr noktasına doğru herhangi bir akım akmamaktadır. Bir toprak arızası meydana geldiğinde, arıza akımı ve gerilimi nötr noktasının topraklama şekline göre değişiklik göstermektedir.
Türkiye Elektrik İletim Şebekesi içerisinde yer alan transformatör merkezlerinde bulunan 380/33 kV transformatörlerin sekonder sargıları topraklama transformatörü üzerinde topraklanmaktadır.Güç transformatörün sekonder tarafının üçgen bağlı olduğu ve erişilebilir nötr noktasının mevcut olmadığı şebekelerde, topraklama transformatörü kullanılarak yapay bir nötr noktası oluşturulur. Topraklama transformatörünün kullanımı toprak arızalarının karakteristiğini değiştirmektedir. Şebekede kullanılan topraklama transformatörü, dirençli arıza akımının azalmasını ve kalan reaktif akımın artmasını etkiler. Topraklama transformatörü sıfır empedansının (R0 ve X0) ihmal edilmesi, koruma rölelerinin arıza tespiti ve insanlar ve ekipmanlar üzerinde ölümcül hatalara neden olabilecek beklenmedik toprak arıza akımı meydana getirebilirler. Topraklama yönteminin seçimi, dağıtım şebekesinin yapısına ve karakteristiğine de bağlıdır. Genel olarak, bir dağıtım şebekesinin yapısını iletkenlerin uzunluğu belirlemektedir. Ancak kablo ve havai hatlar arasındaki oran da önemlidir. Orta gerilim şebekesindeki 1 km’lik kabloda 1 km’lik havai hattan 10 kat daha fazla kapasitans olduğu bilinmektedir. Dağıtım şebekelerinde kullanılan tipik iletkenlere ait veriler Tablo 1’de verilmiştir. Kablo ve havai hatlar arasındaki kapasitans oranları detaylı olarak incelenebilir. Kablo kullanım oranının artması ile ilgili dağıtım bölgesindeki kapasitesinin de artmasına neden olacaktır.
DEVAMI: ELEKTRİKPORT